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a b s t r a c t

TCP performs poorly in networks with serious packet reordering. Processing reordered
packets in the TCP-layer is costly and inefficient, involving interaction of the sender and
receiver. Motivated by the interrupt coalescing mechanism that delivers packets upward
for protocol processing in blocks, we propose a new strategy, Sorting Reordered Packets
with Interrupt Coalescing (SRPIC), to reduce packet reordering in the receiver. SRPIC works
in the network device driver; it makes use of the interrupt coalescing mechanism to sort
the reordered packets belonging to the same TCP stream in a block of packets before deliv-
ering them upward; each sorted block is internally ordered. Experiments have proven the
effectiveness of SRPIC against forward path reordering.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction and motivation

The last 30 years have witnessed the tremendous suc-
cess of the Internet Protocol suite. It was developed by
the Defense Advanced Research Projects Agency (DARPA),
and has been used widely in military, educational, and
commercial systems. The fundamental architectural fea-
ture of the Internet is the use of datagrams (packets) as
the units which are transported across the underlying net-
works individually and independently; the datagram pro-
vides a basic building block on which a variety of types
of services can be implemented [1]. The widely deploy-
ment of TCP/IP has been attributed to this feature.
However, datagrams can arrive at the destination out-of-
sequence, necessitating packet reordering, and degrading
the performance of high-layer services such as TCP.

Internet measurement studies [2–10] have shown that
the phenomenon of packet reordering exists throughout
the Internet and sometimes can be severe. Causes of packet
reordering in IP networks have been identified in [10–12],

including packet-level multi-path routing, route flapping,
inherent parallelism in high-speed routers, link-layer
retransmission, and router forwarding lulls. Packet reor-
dering is now one of the four metrics describing QoS in
packet networks, along with delay, loss, and jitter.

Two trends regarding packet reordering need to be
emphasized. First, the studies in [3,9,10] demonstrate a
strong correlation between inter-packet spacing and pack-
et reordering. With the deployment of high-speed TCP
variants, such as FAST TCP [13], CUBIC [14], BIC [15], and
HSTCP [16], sustained high TCP throughput has become
achievable in very high bandwidth networks. The smaller
inter-packet spacing resulting from high throughput may
increase the probability of packet reordering. Second, local
parallelism is on the increase within the Internet because it
reduces equipment and trunk costs [4]. Backbone network
link technology has reached 10 Gbps, with 40 Gbps or 100
Gbps on the horizon. More and more parallelism is being
introduced into network devices to reduce cost or mini-
mize engineering difficulties. Even the largest network
equipment vendors cannot avoid troubles with reordering
in their network devices [2,10,17,18].

For connection-oriented reliable data transmission,
packet reordering is dealt with in the TCP-layer of the
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Internet architecture [1]. TCP performs poorly in networks
with severe packet reordering. Studies in [4,11] clearly dis-
cuss the impact of packet reordering on TCP. Over the
years, various reordering-tolerant algorithms [19–24] have
been proposed to deal with packet reordering in TCP. Stud-
ies in [11,25] have proven the effectiveness of these reor-
dering-tolerant algorithms. One common characteristic of
these algorithms is that they all operate in the TCP-layer
and react passively to out-of-sequence packets, instead of
behaving actively to eliminate or reduce packet reordering
to save processing in TCP, which is costly and involves
interaction of sender and receiver. So far, little research
on actively eliminating or reducing packet reordering at
lower network layers has been reported and published.
Motivated by the interrupt coalescing mechanism [26],
which delivers packets in blocks for higher layer protocol
processing, we propose a new strategy to eliminate or re-
duce the packet reordering in the receiver, which we call
Sorting Reordered Packets with Interrupt Coalescing
(SRPIC). SRPIC works in the network device driver. It makes
use of the interrupt coalescing mechanism to sort reor-
dered packets of the same TCP stream in a block of packets
before delivering them upward; each sorted block is inter-
nally ordered. Experiments have demonstrated the effec-
tiveness of SRPIC against forward path reordering. The
benefits of SRPIC are: (1) saving costly processing in the
TCP-layer in both sender and receiver, increasing overall
system efficiency; (2) achieving higher TCP throughput;
(3) maintaining TCP self-clocking and reducing injection
of bursty traffic into the network; (4) reducing or eliminat-
ing unnecessary retransmissions and duplicate ACKs or
SACKs in the network, enhancing overall network effi-
ciency; and (5) coexistence with other packet reordering-
tolerant algorithms. However, it should be emphasized
that SRPIC is a mechanism in the device driver that com-
plements the TCP layer, instead of replacing it; any packet
reordering that cannot be eliminated by SRPIC will be dealt
with by TCP.

The remainder of the paper is organized as follows: In
Section 2, background and related research on TCP packet
reordering is presented. Section 3 describes the SRPIC algo-
rithm. In Section 4, we present experiment results on the
effectiveness of SRPIC. And finally in Section 5, we con-
clude the paper.

2. Background and related work

2.1. Interrupt coalescing

Most operating systems deployed on the network, such
as FreeBSD, Solaris, Linux, and Windows [27–30], are inter-
rupt-driven. When packets are received, the network inter-
face card (NIC) typically interrupts to inform the CPU that
packets have arrived. Without some form of interrupt
moderation logic on the network device driver, this might
lead to an interrupt for each incoming packet. As the traffic
rate increases, the interrupt operations become very costly.

Interrupt coalescing was first proposed by Mogul et al.
[26]. The idea of interrupt coalescing is to avoid flooding
the host system with too many NIC interrupts. Each inter-

rupt serviced may result in the processing of several re-
ceived packets. The system gets more efficient as the
traffic load increases. Usually the interrupt coalescing
mechanism works as follows [26,31]: incoming packets
are first transferred into the ring buffer, and then the NIC
raises a hardware interrupt. When CPU responds to the
interrupt, the corresponding interrupt handler is called,
within which a deferred procedure call (DPC) (Windows)
[30], or a softirq (Linux) [29], is scheduled. At the same
time, the NIC’s receive interrupt function is disabled. DPC
or softirq is serviced shortly after and moves packets from
ring buffer upward for higher layer protocol processing till
the ring buffer is empty. After that, DPC or softirq enables
the NIC interrupt and exits. When more packets come, the
cycle repeats.

2.2. Impact of packet reordering on TCP

TCP is a reliable transport protocol, designed to recover
from misbehavior at the Internet Protocol (IP) layer. The
details of TCP protocol are specified in [32]. TCP performs
poorly in networks with severe packet reordering. Studies
in [4,11] discuss in detail the impact of packet reordering
on TCP. The impact of packet reordering on TCP is
multifold:

� Degrading the receiver efficiency: many TCP implemen-
tations use the header prediction algorithm [33] to
reduce the costs of TCP processing. However, header
prediction only works for in-sequence TCP segments. If
segments are reordered, most TCP implementations do
far more processing than they would for in-sequence
delivery. The two cases are usually termed fast path,
and slow path, respectively. When TCP receives packets
in sequence, it will stay on the fast path, and simply
acknowledge the data as it’s received. Fast path process-
ing has sequential code with well-behaved branches and
loops; CPU cache can have nearly perfect efficiency.
However, if the received segments are out of order, the
receiving TCP will be processing in the slow path and
duplicate acknowledgements will be generated and
sent; if the TCP has selective acknowledgements (SACK)
[34] and duplicate SACK (DSACK) [20] enabled, the
receiver will sort the out-of-order queue to generate
SACK blocks. Sorting the out-of-order queue is expen-
sive, especially when the queue is large. Slow path pro-
cessing leads to a random pattern of data access, which
is far less deterministic and presents a challenge for CPU
caches. Packet reordering places serious burdens on the
TCP receiver.

� Degrading the sender efficiency: when duplicate
acknowledgements (dupACKs) come back to the sen-
der, the sender TCP will also be processing in the slow
path. If dupACKs include SACK options, the computa-
tional overhead of the processing SACK block is high.
Packets in flight and not yet acknowledged are held
in the retransmission queue. On receipt of SACK infor-
mation, the retransmission queue would be walked
with the relevant packets tagged as sacked or lost.
For large bandwidth-delay products [31], the retrans-
mission queue is very large, and the walk is costly.
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Finally, if the number of dupACKs exceeds dupthresh,
the sending TCP may go to fast retransmit and perform
unnecessary retransmissions. The TCP reordering-toler-
ant algorithms may also adjust dupthresh to avoid
unnecessary fast retransmit or rapid recovery from
the false reductions of cwnd and ssthresh. These opera-
tions are also costly.

� Degrading TCP performance: most TCP implementations
consider three or more duplicate ACKs as an indication
that a packet has been lost, based on the assumption
that reordered packet can trigger only one or two dupli-
cate ACKs. However, if packets are reordered to a
slightly greater degree, TCP misinterprets it as a lost
packet and unnecessarily invokes fast retransmit/fast
recovery to reduce the congestion window in the sender.
Thus the congestion window may be kept small relative
to the available bandwidth of the path with persistent
and substantial packet reordering. Packet reordering
would lead to loss of TCP self-clocking and understating
of estimated RTT and RTO, which also throttle the TCP
throughput.

� Wasting Network bandwidth: The unnecessary retrans-
missions in the forward path and the dupACKs/SACKs in
the reverse path waste the network bandwidth.

2.3. Related work

Over the years, various reordering-tolerant algorithms
have been proposed for packet reordering in TCP. The
most widely deployed algorithms are the Eifel algorithm
[19] by Ludwig and Katz, and the DSACK TCP [20] by
Floyd et al. Leung et al. give a comprehensive survey of
reordering-tolerant algorithms in [11]. In general, those
algorithms either adaptively adjust TCP reordering
threshold dupthresh to avoid false fast retransmit, or rap-
idly recover from the false reductions of congestion win-
dow cwnd and slow start threshold ssthresh in the sender.
There is also a different group of reordering-tolerant algo-
rithms termed Response Postponement in [11]. The re-
sponse postponement algorithms avoid triggering
spurious congestion responses in the sender or duplicate
ACKs generation in the receiver by deferring them for a
time period, in the hope that the out-of-sequence packets
might come during the period. From this perspective, the
response postponement algorithms are similar to our pro-
posed SRPIC. One common characteristic of these algo-
rithms is that they operate in the TCP-layer and react
passively to out-of-sequence packets, instead of behaving
actively to eliminate or reduce packet reordering to save
processing in TCP.

SRPIC is different from these algorithms in a number
of ways. First, it operates in the low layer of the protocol
stack, and avoids complicating the already bloated
TCP-layer. In addition, the SRPIC mechanism could be
applied to other services, not just TCP. Secondly, SRPIC
behaves actively to eliminate or reduce packet reordering
to save processing in TCP. Finally, since interrupt
coalescing can naturally group packets into blocks, SRPIC
does not require timing mechanisms. By contrast,
response postponement algorithms require timing

mechanisms for the deferred operations, complicating
TCP implementation.

In [35], Radunovic et al. proposes a delayed reordering
algorithm for the Horizon architecture. Similar to our ap-
proach, the delayed reordering algorithm is implemented
between the data link layer and network layer; it sorts
reordered packets and delivers them in sequence. How-
ever, this algorithm needs to estimate one-way delay and
variance to implement a timing mechanism for packet
delivery.

In [36], Govind et al. proposes a packet sort mechanism
to reduce packet reordering in network processors. Their
work can be applied in network devices such as routers
and switches.

In [37], Kandula et al. proposes a new traffic splitting
algorithm that operates on bursts of packets, carefully cho-
sen to avoid reordering. This mechanism is implemented in
router and applied for dynamic load balancing.

3. Sorting Reordered Packets with Interrupt Coalescing
(SRPIC)

3.1. Interrupt coalescing packet block size

The interrupt coalescing mechanism handles multiple
packets per interrupt as the packet rate increases. In each
interrupt, the packets belonging to the same stream make
up a block. In this section, we study the relationship of the
block size to the incoming packet rate. In general, the pack-
et receiving process of different OSes are similar, but use
different terminologies. For example, the softirq in Linux
is called Deferred Procedure Call in Windows. In the fol-
lowing analysis, we assume the receiver to be running
Linux.

Assume there is bulk data flowing from sender to recei-
ver, such as an FTP file transfer. Process A is the data
receiving process in the receiver. For simplicity, assume
only process A runs on the receiver, and no other traffic
is being directed to it. At time t, packets are incoming at
the receiver with a rate of PðtÞ packets/second (pps). Also,
let PðtÞ be the interrupt coalescing driver’s hardware inter-
rupt delay, which includes NIC interrupt dispatch and ser-
vice time; the software interrupt softnet’s packet service
rate be Rsn (pps).

At time t0 � e, the ring buffer is empty and A is wait-
ing for network data from the sender. At time t0, packets
start to arrive in the receiver. As an interrupt-driven
operating system, the OS execution sequence is: hard-
ware interrupt ? software interrupt (or DPC) ? process
[29,38]. Arriving packets are first transferred to ring buf-
fer. The NIC raises a hardware interrupt which results in
scheduling the softirq, softnet. The softnet handler starts
to move packets from ring buffer to the socket receive
buffer of process A, waking up process A and putting it
into the run queue. During this period, new packets
might arrive at the receiver. Softnet continues to process
the ring buffer till it is empty. Then softirq yields the
CPU. Process A begins to run, moving data from the sock-
et’s receive buffer into user space. Typically, process A
runs out of data before the next packet arrives at the
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receiver, and goes to sleep, waiting for more. If the next
packet always arrives before process A goes to sleep, the
sender will overrun the receiver. Incoming packets would
accumulate in the socket’s receive buffer. For TCP traffic,
the flow control mechanism would eventually take effect
to slow down the sender. When the next packet arrives
at the receiver, the sequence of events is repeated. The
cycle repeats until process A stops. Fig. 1 illustrates the
packet receiving process with interrupt coalescing
[31,39].

We use superscript j to denote cycles; cycle j starts at
time tj. Letting Tj

sn be the time that softnet spends empty-
ing the ring buffer in cycle j, we see that

1þ
Z tjþT intrþTj

sn

tj

PðtÞdðtÞ
$ %

¼ Tj
sn � Rsn: ð1Þ

Here, Tj
sn � Rsn is actually the number of packets that are

handled together in cycle j. We call this group of packets
as block j; the block size Blockj is:

Blockj ¼ Tj
sn � Rsn: ð2Þ

For any given receiver, T intr and Rsn are relatively fixed.
Based on (1) and (2), it is clear that the block size will in-
crease nonlinearly with the data rate PðtÞ. For example, if
PðtÞ is relatively stable in cycle j, with average value Pj,
then we will have

Blockj ¼ 1þ Pj � T intr

1� Pj=Rsn

$ %
: ð3Þ

To illustrate the relationship between the block size and
PðtÞ, we run data transmission experiments over an iso-

1

1

Hardware IRQ

Software IRQ

7 Pn

Hardware IRQ

Software IRQ

Hardware IRQ

Software IRQ

Time

Time

2 6 8Tintr

t0

...

...

2 3 654

43 5

987 Pn

9

...

t0

Tintr

Cycle 0 Cycle 1

Packets

Block 0 Block 1 Block 2

Tintr Tintr
Software IRQ

Fig. 1. Packet receiving process with interrupt coalescing.

Fig. 2. Block sizes vs. different incoming data rates.
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lated sub-network. In the experiments, we run iperf [40]
to send data in one direction between two computer sys-
tems. The sender and receiver’s detailed features are as
shown in Section 4. The Round Trip Time (RTT) statistics
are: min=avg=max=dev = 0.134/0.146/0.221/0.25 ms, with
no packet loss. We use three different NICs (100 Mbps,
1 Gbps, and 10 Gbps, respectively) in the sender to vary
the bandwidth and control maximum achievable PðtÞ.
Iperf runs for 50 s; we record the throughput and the
block size at different cycles. Fig. 2 illustrates the block
sizes with different NICs.1 Fig. 2A–C correspond to the sen-
der NIC 100 Mbps, 1 Gbps, and 10 Gbps, respectively. Fig. 2
clearly shows that block size increases with throughput.
With 100 Mbps NIC (Fig. 2A), the maximum achievable
PðtÞ is limited to 100 Mbps and throughput is low at
95.3 Mbps. Correspondingly, each block has only one pack-
et. With 1 Gbps NIC (Fig. 2B), the maximum achievable PðtÞ
is now raised up to 1 Gbps and throughput is around
938 Mbps. The block size is commonly around 7 packets.
For 10 Gbps NIC (Fig. 2C), the maximum achievable PðtÞ
can reach as high as 10 Gbps. The throughput is high at
5.89 Gbps and blocks typically contain 30–60 packets.
Please note that based on formula (1)–(3), we try to derive
the ‘‘microscopic” relationship between block size Blockj

and the incoming data rate PðtÞ. However, iperf measures
only ‘‘macroscopic” quantities. Iperf throughput is not
equivalent to the instantaneous data incoming rate PðtÞ.
However, high throughput certainly implies a consistent
high data incoming rate. The experiments still provide
meaningful insight about the relationship between the
block size and PðtÞ.

If multiple streams are transmitting to the same re-
ceiver, the ‘‘effective” Rsn for each stream is actually
decreasing. But for each individual stream, the relation-
ship between the block size and PðtÞ remains the same:
the block size will increase as the data rate PðtÞ is
raised.

3.2. Sorting Reordered Packets with Interrupt Coalescing
(SRPIC)

Following the TCP/IP design philosophy [1], most net-
work device drivers deliver received packets upward for
higher layer processing in the same sequence as they
are received. The lower layers of the protocol (below
the transport layer) do not take any measures to pro-
cess packet reordering, other than reassembling IP frag-
ments. Packet reordering is dealt with either in the TCP-
layer for connection-oriented reliable data transmission,
or in the application layer for other transports. For
example, some multimedia applications like VOIP use a
jitter buffer in the application layer to reorder and
smooth out packets. In this paper, we focus on TCP
packet reordering. As discussed above, reordered packets
lead to extra TCP processing overheads in both the sen-
der and the receiver: slow-path processing, DupACKs/
SACK generation, and the computational overhead in
processing SACK blocks. In the worst case, packet reor-

dering will lead to false fast retransmit, resulting in
small congestion window in the sender and severely
degrading throughput.

Motivated by the fact that with interrupt coalescing,
the network device driver delivers the received packets
in blocks, we propose a new strategy to eliminate or re-
duce the packet reordering seen by TCP. The new strat-
egy, Sorting Reordered Packets with Interrupt
Coalescing (SRPIC), works in the network device driver
of the receiver. It makes use of the interrupt coalescing
mechanism to sort the reordered packets belonging to
each TCP stream in the interrupt coalesced blocks before
delivering them. Each block is then internally free of
reordering. We are focusing on the TCP packet reordering
in this paper; however SRPIC could also be applied to
other services.

Clearly, for our proposed strategy to work, two ques-
tions need to be answered first:

(1) Does sorting the reordered packets within blocks
eliminate or reduce packet reordering?

(2) Is the sorting of reordered packets in the network
device driver more efficient than processing them
in the TCP-layer?

In the following sections, we first give an example2 to
illustrate the effectiveness of sorting the reordered packets
in blocks to eliminate or reduce packet reordering. The sec-
ond question will be answered after the SRPIC algorithm is
presented.

Consider that 20 packets are sent from a TCP sender
to a TCP receiver, and those packets arrive in the receiver
in the order as shown in Fig. 3A. According to the packet
reordering metrics in [12], there are 6 packets reordered
in Fig. 3A, yielding a packet reordering rate of 30%, and
maximum packet reordering extent of 3. Therefore, if
the network device driver delivers the received packet
upward in the same sequence as they were received
from the network, the protocol stack will deal with those
6 instances of packet reordering in the TCP-layer. In the
Figure, the packet reordering instances are highlighted in
red.3

Now assume that the original packet sequence in Fig. 3A
can be sorted in blocks. Fig. 3B and C give the resulting
packet sequence with a sorting block size of 5 and 10,
respectively. We summarize the packet reordering metrics
for the resulting packet sequences in Table 1, and compare
them with the original one. Before continuing, we give two
definitions:

� Intra-block packet reordering: packet reordering that
occurs within a sorting block.

� Inter-block packet reordering: packet reordering that
occurs across sorting blocks.

1 For the illustration’s purpose, only 200 consecutive cycles’ data are
shown.

2 Because the packet reordering occurs randomly, it is difficult to
perform the purely mathematical analysis.

3 For interpretation of the references to color in this figure, the reader is
referred to the web version of this article.
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In Fig. 3B, intra-block packet reordering includes packet
2, 4, 13, and 17; inter-block packet reordering includes
packet 5 and 10. In Fig. 3C, intra-block packet reordering
includes packet 2, 4, 5, 13, and 17; inter-block packet reor-
dering includes only packet 10. Fig. 3 and Table 1 clearly
show that sorting the reordered packet sequence in blocks
can effectively eliminate intra-block packet reordering, but
does not eliminate inter-block packet reordering, although
it might reduce the packet reordering extent (e.g., Packet 5
in Fig. 3B). With larger sorting block sizes, reordered pack-
ets have more chance of belonging to Intra-block packet
reordering. The conclusion is that sorting the reordered
packet sequence in blocks can effectively eliminate or re-
duce the overall packet reordering ratio. In general, the lar-
ger the block size, the better the effect.

3.3. SRPIC algorithm and implementation

The interrupt coalescing mechanism handles multiple
packets per interrupt as the packet rate increases. In each
interrupt, the packets belonging to the same stream natu-
rally make up a SRPIC sorting block. We have implemented
the proposed SRPIC in Linux. In order to implement SRPIC,
the network device driver has a SRPIC_manager to adminis-
ter each TCP stream, which is differentiated by the combi-
nation of {src ip_addr, dst ip_addr, src tcp_port, dst tcp_port}.
Each SRPIC_manager has a structure which looks like:

STRUCT SRPIC_manager {
. . .

int BlockSize; /* Maximum block size to sort
packet reordering */

int PacketCnt; /* The number of packets in the
block */

int NextExp; /* The next expected sequence
number in the receiver. The stored
value in NextExp is determined
from a previous packet */

List *PrevPacketList; /* The packet list for out-of-order
packets with sequence numbers
less than NextExp */

List *CurrPacketList; /* The packet list for in-sequence
packets */

List *AfterPacketList; /*The packet list for out-of-order
packets with sequence numbers
larger than NextExp */

. . .

}

The SRPIC_manager is dynamically created or destroyed.
When created or reinitialized, all the elements of
SRPIC_manager will be set to zero. When the network de-
vice driver fetches a packet from the ring buffer, it first
checks whether the packet is suitable for SRPIC. It is clear
that fragmented and non-TCP packets are not appropriate.
However, TCP packets (segments) are also not suitable for
SRPIC if their headers include IP or TCP options (except the
timestamp option), or if their TCP control bits are set (e.g.,
ECE, CWR, URG, RST, SYN, and FIN). These packets might
need special and immediate treatment by higher layer pro-
tocols and should not be held back in the network device
driver. Packets not suitable for SRPIC are delivered upward
as usual. In general, the pseudo code for the SRPIC algo-
rithm works as shown in Listing 1.

Fig. 3. Sorting packet reordering in blocks.

Table 1
Packet reordering metrics with different sorting block sizes.

Sorting block
size

Reordering
incidents

Reordering
ratio (%)

Maximum reordering
extent [12]

1 (no sorting) 6 30 3
5 3 10 1
10 1 5 1

W. Wu et al. / Computer Networks 53 (2009) 2646–2662 2651
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Listing 1. Pseudo Code for SRPIC implementation

static int Global SRPIC PacketCnt ¼ 0;

while (not ring_buffer_is_empty ())
{

P ¼ Fetch packet from ring buffer ðÞ;
if (not Packet_suitable_for_SRPIC (P)) Deliver_packet_upwards (P);
else {

if ððM ¼ Find SRPIC manager for packet ðPÞÞ ¼¼ NULLÞ
M ¼ Create SRPIC manager for packet ðPÞ;

if ðM ! PacketCnt ¼¼ 0Þ {
M ! NextExp ¼ TCP payload 1st byte sequenceðPÞ þ TCP payload len ðPÞ;
M ! PacketCnt þþ;

Add_packet_to_list_tail ðP;M ! CurrPacketListÞ;
} else {

if ðTCP payload 1st byte sequenceðPÞ < M ! NextExpÞ
Add_packet_to_list_and_sort ðM ! PrevPacketList; PÞ;

if ðTCP payload 1st byte sequence ðPÞ ¼¼ M ! NextExpÞf
Add_packet_to_list_tail ðM ! CurrPacketList; PÞ;
M ! NextExp ¼ TCP payload 1st byte sequence ðPÞ þ TCP payload len ðPÞ;

}
if ðTCP payload 1st byte sequence ðPÞ > M ! NextExpÞ

Add_packet_to_list_and_sort ðM ! AfterPacketList; PÞ;
M ! PacketCnt++;
If ðM ! PacketCnt >¼ M ! BlockSizeÞ Flush SRPIC managerðMÞ;

}
Global_SRPIC_PacketCnt++;
if ðGlobal SRPIC PacketCnt >¼ Ringbuffer SizeÞ {

Flush_all_SRPIC_managers();
Global SRPIC PacketCnt ¼ 0;

} } }
Flush_all_SRPIC_managers ();
Global SRPIC PacketCnt ¼ 0;

As shown in the pseudo code, SRPIC has three packet
lists: PrevPacketList, CurrPacketList, and AfterPacketList.
The first packet in each sorting block will always go to
CurrPacketList; then NextExp is updated to TCP payload 1st

byte sequence ðPÞþTCP payload len ðPÞ. Here, TCP payload 1st

byte sequence ðPÞ obtains the first byte sequence number
of P’s payload; and TCP_payload_len (P) calculates P’s pay-
load length. After that, incoming packets will be delivered
to different packet lists depending on whether they are in-
sequence or not. SRPIC compares the first byte sequence
number of an incoming packet’s payload with NextExp; if
equal, the packet is in-sequence. Then, it is added to the
CurrPacketList and NextExp is correspondingly updated.

Otherwise, the packet is out-of-sequence, which will be
delivered to either PrevPacketList or AfterPacketList. Packets
loaded into PrevPacketList and AfterPacketList are sorted.
Table 2 gives an example to illustrate the packet list oper-
ations. Assuming each packet’s payload length is 1, the
sorting block consists of 7 packets, and packet arrival se-
quence is: 2!3!1!4! 6!7!5.

Clearly, the fate of the subsequent packets in a sorting
block depends significantly on the sequence number of
the first packet. This design is elegant in its simplicity:
SRPIC is stateless across sorting blocks and SRPIC is com-
putable ‘‘on the fly”. The purpose of having three packet
lists is to reduce the sorting overheads: packets will

Table 2
SRPIC packet lists operation.

PrevPacketList: {} PrevPacketList: {} PrevPacketList: {} PrevPacketList: {1}
CurrPacketList: {} CurrPacketList: {2} CurrPacketList: {2,3} CurrPacketList: {2,3}
AfterPacketList:{} AfterPacketList:{} AfterPacketList:{} AfterPacketList:{}
NextExp: 0 NextExp: 3 NextExp: 4 NextExp: 4

Step 0: Init Step 1: 2 arrives Step 2: 3 arrives Step 3: 1 arrive

PrevPacketList: {1} PrevPacketList: {1} PrevPacketList: {1} PrevPacketList: {1}
CurrPacketList: {2,3,4} CurrPacketList: {2,3,4} CurrPacketList: {2,3,4} CurrPacketList: {2,3,4,5}
AfterPacketList:{} AfterPacketList:{6} AfterPacketList:{6,7} AfterPacketList:{6,7}
NextExp: 5 NextExp: 5 NextExp: 5 NextExp: 6

Step 4: 4 arrives Step 5: 6 arrives Step 6: 7 arrives Step 7: 5 arrives
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normally arrive in sequence; the NextExp and CurrPacket-
List will ensure that most packets will be placed at the tail
of CurrPacketList without being sorted. Another advantage
of this implementation is that Large Receive Offload
(LRO) [41] can be performed on CurrPacketList. We do not
suggest LRO be implemented in PrevPacketList or AfterPac-
ketList. Because these two lists keep non-in-sequence pack-
ets, there might be holes between neighboring packets in
the lists, making LRO’s overheads too high.

As has been discussed in previous sections, the larger
the block size, the better the effect of reducing or eliminat-
ing packet reordering ratio and extent. But if all packets
were delivered upward only at the end of interrupt coa-
lescing (emptying the ring buffer), the block size might
be large and the early packets in a sorting block might be
delayed too long for higher layer processing, degrading
performance. Let’s continue the mathematical analysis in
Section 3.1. Assume SRPIC is in operation and there is no
constraint on the size of interrupt coalesced blocks, the
software interrupt softnet’s packet service rate is now R0sn

(pps); PðtÞ is relatively stable in cycle j, with average value
Pj, and then we will have

Tj
sn ¼

1þ T intr � Pj

R0sn � Pj
R0sn

$ %,
R0sn: ð4Þ

Tj
sn is the time that softnet spends emptying ring buffer in

cycle j and also the extra delay that the first packet of block
j incurs due to SRPIC. If Pj is high, Tj

sn could be large and the
early packets in a sorting block might be delayed long. To
prevent this, BlockSize controls the maximum block size
for SRPIC_manager, and then we will have

8j > 0; Tj
sn 6 BlockSize=R0sn: ð5Þ

BlockSize is configurable. The default value for BlockSize is
32, which is large enough to eliminate mild to moderate
packet reordering. When network packet reordering is se-
vere, it can be configured relatively large. With current
computing power, Tj

sn is usually at microsecond level. Its
effect on RTT could be ignored. When the number of accu-
mulated packets in a SRPIC_manager reaches BlockSize,
Flush_SRPIC_manager () will deliver the packet block for
higher layer processing in the sequence: PrevPacketList,
CurrPacketList, AfterPacketList, and then the SRPIC_manager
will be reinitialized.

SRPIC prevents high throughput connections from pre-
empting idle connections like Telnet or SSH. SRPIC has a
global variable Global_SRPIC_PacketCnt to counts the
amount of packets for SRPIC sorting before a full flush of

all SRPIC_managers. When Global_SRPIC_PacketCnt reaches
Ringbuffer_Size, Flush_all_SRPIC_managers () will send all
the packets upward even if the number of accumulated
packets within a SRPIC_manager does not reach BlockSize.
Ringbuffer_Size is the receive ring buffer size. It is a design
parameter for the NIC and driver. For example, Myricom
10G NIC’s is 512, Intel’s 1G NIC’s is 256. As such, the max-
imum extra delay that idle connections can experience is
Ringbuffer Size=R0sn. With current computing power, this is
usually at most at sub-millisecond’s level and can be ne-
glected for idle connections.

At the end of interrupt coalescing, Flush_all_SRPIC_man-
agers() will send all the packets upward even if the number
of accumulated packets within a SRPIC_manager does not
reach BlockSize. This limits delays in packet delivery.

Now let’s deal with the second question raised in Sec-
tion 3.2 – is this efficient? Our answer is a definite yes!
For connection-oriented reliable data transmission, the
function of sorting reordered packets is necessary and can-
not be avoided. If the packet reordering is eliminated or re-
duced in the network device driver, work in the TCP-layer,
which acts on each packet in the order presented, is saved.
The implementation of SRPIC itself does not take much
overhead: managing a SRPIC_managerfor each TCP stream,
checking if an incoming packet is suitable for SRPIC; and
manipulating the three packet lists. However, the savings
in the TCP-layer could be significant. All the negative im-
pact of packet reordering on TCP discussed in Section 2.2
could be saved or reduced.

Another big advantage of SRPIC is that it cooperates
with any existing TCP-level packet ordering tolerant algo-
rithms to enhance the overall TCP throughput.

We assert that sorting of reordered packets in the net-
work device driver is much more cost-efficient than deal-
ing with packet reordering in the TCP-layer. In Section 4,
we will further verify the claim through experimentation.
However, it needs to be emphasized that SRPIC is a mech-
anism in the device driver to complement the TCP-layer,
instead of replacing it. Any packet reordering that cannot
be eliminated by SRPIC will be dealt with by TCP.

4. Experiment and analysis

To verify our claims in previous sections, we run data
transmission experiments upon the testing networks
shown in Fig. 4. The testing networks consist of a sender,
a network emulator, a network switch and a receiver. In
our experiments, iperf is sending from the sender to the re-

Receiver
Netem Netem

eth0 eth1

Emulated Networks

Sender

Forward Path Data Packet Reverse Path ACK Packet

Data

ACK

Cisco 
6509 10Gbps1 Gbps1 Gbps

Fig. 4. Experiment networks.
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ceiver via the network emulator. The network emulator is a
Linux system, acting as a router to forward traffic between
the sender and the receiver. The network emulator has two
1 Gbps interfaces, eth0 and eth1. To emulate various net-
work conditions (e.g. delay, traffic drop, reordering etc),
Netem [42] is configured on both interfaces, eth1 to emu-
late the forward path and eth0 to emulate the reverse path.
During the experiments, the background traffic in the net-
work is kept low. Without extra delay configured by Ne-
tem, the Round Trip Time (RTT) statistics between the
sender and the receiver are: min=avg=max=dev= 0.134/
0.146/0.221/0.25 ms. There is no packet loss or reordering
in the network, except the intended packet reordering and
drops configured by Netem in the experiments. The system
features for the experiments are as shown in Table 3.

The latest Linux network stack supports an adaptive
TCP reordering threshold mechanism.4 Under Linux, dup-
thresh is adaptively adjusted in the sender to reduce unnec-
essary retransmissions and spurious congestion window
reduction. It can reach as large as 127. But some network
stacks, such as Windows XP and FreeBSD, still implement
a static TCP reordering threshold mechanism with a default
dupthresh value of 3. Since SRPIC is an active packet reorder-
ing reducing mechanism on the receiver side, both adaptive
and static TCP reordering threshold mechanisms on the sen-
der side are employed in our experiments. To simulate the
static threshold, we modified Linux by fixing dupthresh at
3. For clarity, a sender with adaptive TCP reordering thresh-
old is termed an A-Sender, while a sender with a static reor-
dering threshold is termed an S-Sender.

We run TCP data transmission experiments from sender
to receiver. Unless otherwise specified, the sender trans-
mits one TCP stream to the receiver for 50 s. In our exper-
iments, the TCP congestion control in the sender is CUBIC
[14]. We vary the network conditions in the forward and
reverse paths, respectively. Under the same experiment
conditions, the experiment results with a SRPIC receiver
are compared to those with a Non-SRPIC receiver. The met-
rics of interest are: (1) Throughput (Mbps); (2) PktsRetrans,
number of segments transmitted containing at least some
retransmitted data; (3) DupAcksIn, number of duplicate
ACKs received; and (4) SackBlocksRcvd, number of SACKs
blocks Received. To obtain these experiment metrics, the
sender is patched with Web100 software [43]. For better
comparison, PktsRetrans, DupAcksIn, and SackBlocksRcvd
are normalized with throughput (Mbps) as: PktsRetrans/
Mbps, DupAcksIn/Mbps, and SackBlocksRcvd/Mbps. Consis-
tent results are obtained across repeated runs. All results

presented in the paper are shown with 95% confidence
interval.

4.1. The forward path experiments

4.1.1. Reordering experiments
In the experiments, path delays are added both in the

forward and reverse paths. In the forward path, the delay
follows the normal distribution; the mean and standard
deviation of the path delay are a and b� a, respectively,
where b is the relative variation factor. A larger b induces
more variation in the path delay, hence increasing the de-
gree of packet reordering. In the reverse path, the delay is
fixed at a. No packet drops are induced at this point. Also,
SACK is turned off to reduce its influence. In the following
sections, when not otherwise specified, SACK is turned on
if there are packet drops introduced in the experiments.
In the experiments, a is 2.5 ms and b is varied. The sender
transmits multiple parallel TCP streams (1, 5, and 10,
respectively) to the receiver for 50 s. The results are as
shown Table 4.

From Table 4, it can be seen that: (1) SRPIC can effec-
tively increase the TCP throughput under different degrees
of packet reordering (except the cases that throughput sat-
urates the 1Gbps link), for both S-Sender and A-Sender. For
example, at b ¼ 0:2% with 1 TCP stream, SRPIC surprisingly
increases the TCP throughput more than 100% for S-Sen-
der. (2) SRPIC significantly reduces the packet retransmis-
sion for S-Sender. (3) SRPIC effectively reduces the packet
reordering in the receiver; the duplicate ACKs to the sender
are significantly reduced.

Although SRPIC can significantly reduce the packet
reordering in the receiver, it is interesting to note that A-
Sender does very few packet retransmissions in both SRPIC
and Non-SRPIC cases, the effect of SRPIC in reducing packet
retransmission and improving the throughput for A-Sender
is not as significant as for S-Sender. This is due to the fol-
lowing facts: (1) for S-Sender, dupthreshis static and fixed
at 3; three consecutive duplicate ACKs lead to fast retrans-
mission and unnecessarily reduce the congestion window.
Since SRPIC can significantly reduce duplicate ACKs,
chances of unnecessarily invoking packet retransmissions
and spurious reduction of congestion window in the sen-
der may be significantly reduced with SRPIC. (2) A-Sender
automatically detects packet reordering and adaptively ad-
justs its dupthresh ðP 3Þ. We have noticed that A-Sender’s
dupthresh can reach as large as 127 in the reordering
experiments. When dupthresh is high, the chance of unnec-
essarily invoking packet retransmission and spurious
reduction of congestion window in the sender is consider-
ably reduced even with significant amounts of duplicate
ACKs to the sender. Therefore, the effect of SRPIC in

Table 3
Experiment system features.

Sender Network emulator Receiver

CPU Two Intel Xeon E5335 CPUs, 2.00 GHz, (Family
6, Model 15)

Two Intel Xeon E5335 CPUs, 2.00 GHz, (Family
6, Model 15)

Two Intel Xeon CPUs, 3.80 GHz, (Family
15, Model 4)

NIC Intel PRO/1000 1 Gbps, twisted pair Two Intel PRO/1000 1 Gbps, twisted pair Myricom-10G PCI-Express x8, 10 Gbps
OS Linux 2.6.25, Web100 patched Linux 2.6.24 Linux 2.6.24

4 To support such a mechanism, the reordering-tolerant algorithms
implemented in Linux include Eifel algorithm, DSACK, and RFC 3517.
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improving the throughput and reducing packet retrans-
mission for A-Sender is not as significant as S-Sender.
However, it should be emphasized that the adaptive TCP
reordering threshold mechanism is a sender side mecha-
nism; it cannot reduce the packet reordering of the for-
ward path seen by receiver TCP as SRPIC does. The
experiments supports the claim that SRPIC can cooperate
with existing reordering-tolerant algorithms to enhance
overall TCP performance.

From Table 4, it is apparent that the effect of SRPIC is
more significant when b is smaller. With a smaller b, more
reordered packets belong to intra-block packet reordering,
and SRPIC effectively eliminates intra-block packet reor-
dering. When the degree of the packet reordering is high,
more packets are inter-block reordered; SRPIC cannot re-
duce inter-block packet reordering. As shown in Table 4,
the difference of DupAcksIn/Mbps between Non-SRPIC
and SRPIC when b ¼ 10% is not as significant as that with
b ¼ 0:2%. However, it still can be seen that SRPIC can in-
crease the TCP throughput at b ¼ 10%. This is because
SRPIC eliminates the intra-block packet reordering; even
small, it still increases the chances of opening up sender’s
congestion windowcwnd more than Non-SRPIC would.

For any given receiver, the actual sorting block sizes of
SRPIC are decided by incoming data rate and BlockSize.
BlockSize controls the maximum sorting block size for
SRPIC. However, if incoming data rate is low, the size of
an interrupt coalesced block might not reach BlockSize; as
such, the SRPIC sorting block size is purely decided by
incoming data rate. It is clear that low incoming data rate

will lead to small SRPIC sorting blocks. Table 4 clearly
shows that SRPIC is less effective when the throughput
rates are low. But SRPIC is still applicable under the condi-
tions of low network throughputs. This is because that TCP
throughput measures only ‘‘macroscopic” quantities. It is
not equivalent to an instantaneous packet arrival rate.
Therefore, even at low throughputs, the instantaneous arri-
val rate could be high due to TCP traffic’s bursty nature
[44].

With multiple concurrent TCP streams, the effective
bandwidth available to each stream is actually reduced.
However, the multiple-stream experiments demonstrate
the effectiveness of SRPIC in reducing the packet reorder-
ing of the forward path seen by receiver TCP. This is be-
cause that: (1) TCP traffic is bursty; and (2)
microscopically, the traffic of multiple concurrent streams
shares network bandwidth in a ‘‘time-sharing” way, in-
stead of the ‘‘fluid-flow” way, the instantaneous data rate
for each stream could still be high. As such, each stream
can still form effective SRPIC sorting blocks.

Table 4 shows the effectiveness of SRPIC in reducing the
packet reordering of the forward path seen by receiver TCP,
and validate the benefits of reducing packet reordering for
TCP claimed previously: (1) save costly processing in the
TCP-layer of both the sender and the receiver. The genera-
tion and transmission of DupACKs in the receiver are re-
duced, as is the processing time for DupACKs in the
sender. The chance of staying in the fast path increases.
The sender’s system efficiency is enhanced. But we still
cannot claim that the receiver’s efficiency is enhanced:

Table 4
Reordering experiments: a ¼ 2:5 ms and b is varied.

b (%) Throughput (Mbps) PktsRetrans/Mbps DupAcksIn/Mbps

N-SRPIC SRPIC N-SRPIC SRPIC N-SRPIC SRPIC

S-Sender 1 Stream 10 59.7 ± 0.1 62.5 ± 0.1 1094.2 ± 5.1 1061.5 ± 8.83 2959.9 ± 0.9 2882.1 ± 2.9
2 132.0 ± 2.2 176.7 ± 1.7 1014.2 ± 0.6 771.6 ± 0.6 2252.1 ± 2.7 1742.2 ± 4.2
1 145.3 ± 5.1 240.3 ± 1.3 985.1 ± 3.9 553.0 ± 1.6 2148.9 ± 16.8 1242.3 ± 2.3
0.2 225.0 ± 14.4 472.0 ± 4.1 794.6 ± 5.8 311.6 ± 4.1 1660.1 ± 14.6 694.1 ± 8.0

5 Streams 10 279.7 ± 0.7 300.0 ± 1.1 1068.9 ± 1.8 1028.9 ± 4.5 2917.8 ± 1.2 2811.2 ± 3.5
2 466.3 ± 2.8 562.0 ± 3.0 999.4 ± 0.5 848.6 ± 7.9 2371.5 ± 3.7 2035.0 ± 5.5
1 518.7 ± 4.6 634.3 ± 1.7 971.7 ± 0.9 814.4 ± 0.9 2306.2 ± 3.1 1906.8 ± 5.6
0.2 759.6 ± 2.3 876.3 ± 4.6 782.0 ± 1.3 347.1 ± 27.3 1705.4 ± 2.2 813.7 ± 25.8

10 Streams 10 536.7 ± 18.3 585.3 ± 0.7 1058.9 ± 21.5 1036.5 ± 1.2 2897.5 ± 32.7 2818.4 ± 1.9
2 759.7 ± 0.7 776.7 ± 0.7 1041.4 ± 1.3 932.6 ± 4.4 2374.6 ± 2.7 1988.1 ± 6.1
1 762.7 ± 0.7 787.0 ± 5.9 1023.5 ± 4.0 847.8 ± 87.3 2253.7 ± 18.2 1800.7 ± 79.8
0.2 804.0 ± 3.0 894.7 ± 3.5 768.1 ± 20.7 248.2 ± 20.3 1662.8 ± 31.8 706.9 ± 30.5

A-Sender 1 Stream 10 338.7 ± 0.7 440.7 ± 0.7 0.5 ± 0.1 0.4 ± 0.1 3344.3 ± 5.1 3349.0 ± 2.8
2 800.0 ± 1.1 944.0 ± 0.0 0.3 ± 0.1 0.4 ± 0.3 3031.2 ± 5.3 2490.9 ± 57.9
1 944 ± 0.0 944.0 ± 0.0 0.6 ± 0.4 0.3 ± 0.3 2817.9 ± 24.1 2268.9 ± 13.4
0.2 944.6 ± 1.3 944.3 ± 0.7 0.8 ± 0.7 0.5 ± 0.3 1601.1 ± 41.7 744.1 ± 6.6

5 Streams 10 943.3 ± 0.7 944.0 ± 0.0 1.3 ± 0.1 1.2 ± 0.4 2940.3 ± 2.8 2803.9 ± 2.5
2 945 ± 0 944.0 ± 3.0 0.7 ± 0.1 0.8 ± 0.4 1986.8 ± 11.7 1598.6 ± 18.6
1 944.3 ± 0.7 943.0 ± 3.9 0.6 ± 0.1 0.7 ± 0.3 1821.0 ± 42.8 1418.2 ± 70.9
0.2 945.3 ± 0.7 947.3 ± 0.7 0.9 ± 0.1 0.5 ± 0.1 1169.7 ± 21.3 535.6 ± 26.8

10 Streams 10 944.3 ± 0.7 945.0 ± 0.0 1.2 ± 0.02 1.2 ± 0.1 2322.2 ± 6.3 2203.6 ± 25.1
2 944.7 ± 0.7 945.3 ± 0.7 0.7 ± 0.3 0.6 ± 0.2 1611.6 ± 3.7 1304.9 ± 15.3
1 944.7 ± 0.7 945.3 ± 0.7 0.8 ± 0.4 0.5 ± 0.1 1575.8 ± 48.9 1195.8 ± 40.9
0.2 945.3 ± 0.7 945.3 ± 1.3 0.9 ± 0.1 0.5 ± 0.02 1164.6 ± 15.2 537.7 ± 4.4
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the experiments cannot demonstrate that the savings in
TCP compensates SRPIC overheads in the receiver. We
will prove the enhancement of receiver’s efficiency in
Section 4.1.4. (2) Achieve higher TCP throughput. This
is because the chance of unnecessarily reducing conges-
tion window in the sender significantly decreases with
SRPIC. (3) Maintain TCP self-clocking, and avoid injecting
bursty traffic into the network. (4) Reduce or eliminate
unnecessary traffic retransmission and DupACKs/SACKs
traffic in the network, enhancing the overall network
efficiency.

4.1.2. Packet drop experiments
Path delays are added in both the forward and reverse

paths, with the delay fixed at a ¼ 2:5 ms in both direc-
tions. Packet drop are added in the forward path, uniformly
distributed with a variable rate of d. The purpose of packet
drop experiments is to evaluate whether they have nega-
tive impact on SRPIC performance. Since packet drops will
cause gaps in the traffic stream, SRPIC would hold and sort
the out-of-sequence packets which are actually not misor-
dered. The experiments are run with one TCP stream; no
packet reordering is induced except the retransmission
reordering caused by packet drops. SACK is enabled in
the experiments.

The results are as shown in Table 5. It can be seen that
packet drops will not cause negative impact on SRPIC per-
formance. The SRPIC throughputs are almost the same with
those of Non-SRPIC at different d levels for both S-Sender
and A-Sender. Similar results are observed for other met-
rics like PktsRetrans, DupAcksIn, and SackBlocksRcvd. We
believe that this is because that the BlockSize and
Flush_all_SRPIC_managers() guarantee the packets held for
sorting get delivered upward in timely manner. Compared
to RTT (milliseconds), the SRPIC processing delays (micro-
seconds) is negligible and should not cause any negative
effect on the performance.

In real networks, packet drops, such as congestion-in-
duced packet loss, are usually bursty. We also run experi-
ments with bursty packet drops. Similar conclusions as
above can be drawn. Due to space limitations, those results
are not included here. In the following sections, packet
drops are also uniformly distributed. Experiments with
multiple TCP streams draw similar conclusions.

4.1.3. Packet reordering and drop experiments
Both reordering and drops are added in the forward

path. The forward path delay follows the normal distribu-
tion with mean and standard deviation of a ¼ 2:5 ms and

b� a ¼ 0:4%� 2:5 ¼ 0:01 ms, respectively. Packet drop is
uniformly distributed with a ratio of d, where d is varied.
In the reverse path, the delay is fixed at a ¼ 2:5 ms, with
no drops; SACK is enabled. The sender transmits multiple
parallel TCP streams (1, 5, and 10, respectively) to the re-
ceiver for 50 s. The results are as shown in Table 6. Conclu-
sions similar to Section 4.1.1 can be drawn.

4.1.4. CPU comparison
Previous experiments have shown that SRPIC can effec-

tively reduce packet reordering in the receiver, successfully
increase the TCP throughput, and significantly reduce the
DupAcksIn and SackBlocksRcvd to the sender. It is self-
explanatory that the reduction of DupAcksIn and Sack-
BlocksRcvdto the sender will save the costly DupAcksIn
and SackBlocksRcvd processing in the sender, leading to
higher system efficiency. We need to verify that SRPIC is
also cost-efficient in the receiver. The savings in TCP need
to compensate for the SRPIC overheads.

We run oprofile [45] to profile the system performance
in both the sender and receiver. The metrics of interest
are: (1) CPU_CLK_UNHALTED [46], the number of CPU
clocks when not halted; And (2) INST_RETIRED [46], the
number of instruction retired. These two metrics evaluate
the load on both systems. Since our testing systems are
multi-core based, we pin the network interrupts and iperf
to one specific CPU on each system, in order to make the
profiling more accurate.

The first CPU comparison experiments are run as a ser-
ies of tests: (1) no packet reordering experiments, with a
delay of 2.5 ms is added to both the forward and reverse
paths. The purpose of this test is to evaluate whether SRPIC
will degrade the system performance when there is no
packet reordering. (2) Packet reordering experiments, with
the experiment configuration identical to Table 4, where
b ¼ 0:2%. These experiments are run with A-Sender. We
do not apply packet drops or use S-Sender in the experi-
ments: packet drops cause big throughput variation; with
S-Sender, the throughput difference between SRPIC and
Non-SRPIC cases is very large. The throughput rates in
these experiments all saturate the 1 Gbps link (around
940 Mbps). The experiments are designed to have the same
throughput rates for the sake of better CPU comparison. In
all these experiments, the sender transmits multiple paral-
lel TCP streams (1, 5, and 10, respectively) to the receiver
for 50 s. The results are as shown in Fig. 5. In the figure,
nR+ and nR- represent n streams with or without reorder-
ing, respectively.

Table 5
Packet drop experiments, a ¼ 2:5 ms;d is varied, with 1 TCP stream.

d (%) Throughput (Mbps) PktsRetrans/Mbps DupAcksIn/Mbps SackBlocksRcvd/Mbps

N-SRPIC SRPIC N-SRPIC SRPIC N-SRPIC SRPIC N-SRPIC SRPIC

S-Sender 0.1 35.7 ± 1.0 36.1 ± 3.3 4.3 ± 0.5 4.3 ± 0.5 31.8 ± 4.7 31.3 ± 3.1 32.9 ± 4.9 32.7 ± 2.8
0.01 139.3 ± 21.9 140.7 ± 17.1 0.4 ± 0.04 0.4 ± 0.1 12.6 ± 2.6 11.9 ± 2.5 13.1 ± 3.2 12.6 ± 3.5
0.001 561.6 ± 22.4 563.3 ± 27.2 0.04 ± 0.002 0.0 ± 0.0 4.3 ± 0.1 4.8 ± 0.7 4.3 ± 0.1 4.8 ± 0.8

A-Sender 0.1 37.6 ± 1.3 36.9 ± 0.3 4.4 ± 0.3 4.1 ± 0.3 34.9 ± 1.9 29.5 ± 2.9 36.5 ± 2.1 30.7 ± 3.3
0.01 130.0 ± 18.1 129.0 ± 5.9 0.5 ± 0.1 0.5 ± 0.02 10.7 ± 2.0 11.4 ± 1.6 10.9 ± 2.3 11.9 ± 2.3
0.001 615.3 ± 23.9 620.3 ± 17.1 0.03 ± 0.001 0.04 ± 0.004 3.8 ± 0.7 4.3 ± 0.5 3.9 ± 0.7 4.3 ± 0.5
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From Fig. 5, it can be seen that without packet reorder-
ing, the loads on the sender and receiver are almost the
same for both SRPIC and Non-SRPIC cases, with different
number of parallel TCP streams. However, when there are
reordered packets in the forward path, experiments show
that SRPIC can enhance system efficiency for both the sen-

der and receiver. With SRPIC, CPU_CLK_UNHALTED and IN-
ST_RETIRED on the sender and receiver are lower. This is
because SRPIC can effectively reduce the packet reordering
in the receiver; all the negative impacts discussed in Sec-
tion 2.2 can be reduced. The experiments further support
the claim that the savings in TCP compensate for the SRPIC

Table 6
Packet reordering and drop experiments, a ¼ 2:5 ms; b ¼ 0:4% and d is varied.

d (%) Throughput (Mbps) PktsRetrans/Mbps DupAcksIn/Mbps SackBlocksRcvd/Mbps

N-SRPIC SRPIC N-SRPIC SRPIC N-SRPIC SRPIC N-SRPIC SRPIC

(A) S-Sender
1 0.1 26.6 ± 0.11 38.2 ± 0.34 124.5 ± 1.26 45.8 ± 0.43 1155.9 ± 3.9 537.4 ± 1.8 1286.1 ± 4.6 647.4 ± 2.9

0.01 67.3 ± 1.6 78.6 ± 1.4 125.8 ± 2.2 40.8 ± 1.3 1041.1 ± 9.0 478.9 ± 3.8 1125.8 ± 9.3 566.5 ± 5.7
0.001 89.6 ± 1.4 103.0 ± 2.3 199.9 ± 10.0 50.4 ± 8.0 1135.7 ± 19.7 475.7 ± 10.9 1241.4 ± 25.3 565.1 ± 13.2

5 0.1 102.3 ± 0.65 162 ± 0.0 137.2 ± 0.8 44.5 ± 0.43 1224.9 ± 4.0 403.4 ± 0.8 1386.2 ± 3.8 505.7 ± 1.5
0.01 174.3 ± 0.7 278.3 ± 0.7 157.6 ± 1.2 55.3 ± 1.4 1185.6 ± 4.8 467.8 ± 2.7 1326.2 ± 5.7 578.1 ± 4.0
0.001 199.7 ± 2.8 336.7 ± 1.7 212.4 ± 8.1 67.6 ± 2.1 1266.3 ± 12.2 462.4 ± 4.1 1430.7 ± 16.4 577.1 ± 7.4

10 0.1 189.7 ± 0.7 273 ± 1.1 138.8 ± 0.2 62.3 ± 0.6 1226.4 ± 0.9 403.1 ± 1.3 1398.8 ± 1.2 526.2 ± 2.2
0.01 309.0 ± 0 461.3 ± 2.6 165.5 ± 0.7 81.9 ± 0.9 1217.9 ± 1.7 490.8 ± 1.7 1377.3 ± 2.2 631.0 ± 2.7
0.001 367.0 ± 1.1 510.3 ± 1.7 196.5 ± 1.8 114.8 ± 1.2 1245.9 ± 3.6 553.2 ± 2.8 1419.1 ± 5.5 726.5 ± 4.7

(B) A-Sender
1 0.1 56.6 ± 1.1 60.5 ± 0.84 4.6 ± 0.2 4.6 ± 0.18 1337.4 ± 5.1 564.9 ± 7.8 1608.9 ± 6.4 704.2 ± 9.0

0.01 207.7 ± 3.3 217.7 ± 6.2 0.5 ± 0.08 0.6 ± 0.1 1207.9 ± 8.0 493.8 ± 2.7 1445.9 ± 16.9 643.9 ± 7.4
0.001 556.0 ± 8.1 624.7 ± 5.2 0.07 ± 0.01 0.07 ± 0.01 1915.3 ± 15.7 1134.8 ± 6.9 4069.4 ± 67.3 2777.4 ± 32.1

5 0.1 237.3 ± 0.7 251.3 ± 0.7 4.75 ± 0.13 4.6 ± 0.11 1362.4 ± 4.9 468.8 ± 1.3 1731.9 ± 8.2 635.7 ± 5.5
0.01 911.0 ± 2.3 929.9 ± 3.0 0.48 ± 0.001 0.5 ± 0.01 1439.2 ± 0.9 907.4 ± 1.7 1983.6 ± 5.2 1263.7 ± 5.7
0.001 942.0 ± 0.0 942.0 ± 0.0 0.09 ± 0.01 0.07 ± 0.02 1439.6 ± 15.8 880.4 ± 6.8 2008.8 ± 37.3 1232.1 ± 12.4

10 0.1 441.3 ± 1.3 477.7 ± 0.7 4.8 ± 0.07 4.7 ± 0.02 1507.5 ± 1.4 608.7 ± 1.6 2198.9 ± 2.9 926.6 ± 2.0
0.01 941.3 ± 0.7 941.7 ± 0.7 0.5 ± 0.02 0.49 ± 0.01 1320.9 ± 10.6 840.0 ± 8.2 1710.7 ± 13.3 1115.0 ± 10.2
0.001 942.0 ± 0.0 942.0 ± 0.0 0.08 ± 0.02 0.08 ± 0.01 1303.1 ± 2.5 817.4 ± 8.2 1675.4 ± 1.3 1092.5 ± 12.2

Fig. 5. CPU comparisons, number of events between samples: 100,000.
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overheads in the receiver. The conclusion is that SRPIC en-
hances the receiver’s system efficiency.

For the second set of CPU comparison experiments, we
repeat the packet drop experiments of Section 4.1.2 (single
TCP stream). The results are as shown in Table 7. From Ta-
ble 7, it can be seen that the loads on the sender and recei-
ver are almost the same for both SRPIC and Non-SRPIC
cases, with different level of packet drops. The load differ-
ence is so small that it can be claimed that SRPIC does not
incur extra overheads under the conditions of pure packet
drops. We believe this is because: since packet drops cause
gaps in the traffic stream, SRPIC would hold and sort the
out-of-sequence packets, which are actually not misor-
dered; from this perspective, SRPIC does introduce extra
overheads due to packet drops. However, packet drops will
finally lead to packet retransmission. The retransmitted
packets are actually ‘‘reordered”. Previous experiments
have validated the benefits of SRPIC in saving costly pro-
cessing in TCP for packet reordering, which somehow com-
pensates for the overheads it introduces.

4.2. The reverse path experiments

ACKs/SACKs go back to the sender in the reverse path.
Due to TCP’s cumulative acknowledgements, the reverse
path reordering and packet drops can have the following
impacts [4]: loss of self-clocking, and injection of bursty
traffic into the network. We repeat all experiments above
on the reverse path. Packet reordering and drops are added
in the reverse path, with no packet reordering and drops in
the forward path. The throughput rates of all these exper-
iments saturate the 1 Gbps link (around 940 Mbps). In
these experiments, the metrics used to evaluate SRPIC in
Section 4.1 are very close to each other between the SRPIC
and Non-SRPIC cases. The results are as expected: SRPIC is
the receiver side algorithm, it does not deal with the re-
verse path packet reordering and drops; Also, since there
is no reordering or drops in the forward path, SRPIC will

not take effect in the receiver. Due to space limitations,
the reverse path experiment results are not included here.

4.3. The forward and reverse paths experiments

How will SRPIC perform when packet reordering and
drops occur in both the forward and reverse paths? To an-
swer the question, we repeat the experiments in Section
4.1.3, adding packet reordering and drops in both the for-
ward and reverse paths. For both directions, the path delay
follows the normal distribution with mean and standard
deviation of a ¼ 2:5 ms and b� a ¼ 0:4%� 2:5 ms ¼
10 ls, respectively. Packet drop is uniformly distributed
with a ratio of d. SACK is enabled.

The results are as shown in Table 8. It can be seen that
SRPIC significantly reduces the packet retransmission for
the S-Sender. SRPIC also effectively reduces the packet
reordering in the receiver, with duplicate ACKs and SACK
blocks to the sender significantly reduced as well. It is
the packet reordering and drops in the forward path that
leads to duplicate ACKs and SACK blocks back to the sen-
der. The significant reduction of duplicate ACKs and SACK
blocks to the sender again verify the effectiveness of SRPIC
in reducing the forward path packet reordering seen by re-
ceiver TCP.

It is interesting to note that the throughput rate in Table
8 is a little bit different than in Section 4.1.3. With
d ¼ 0:001%, SRPIC throughput rates are higher than those
of Non-SRPIC, for both S-Sender and A-Sender. This is posi-
tive and as expected. However, with d ¼ 0:01%, the SRPIC
throughput rate is slightly less than the Non-SRPIC case
for A-Sender, although significant reduction of DupAcksIn
and SackBlocksRcvd is still observed. We believe this phe-
nomenon is caused by the ACK reordering in the reverse
path, which somewhat negates the SRPIC’s effort in reduc-
ing the forward path packet reordering. The ACK reorder-
ing should make the number of ‘‘effective” ACKs back to
the sender smaller because some of them get discarded

Table 7
CPU comparisons of packet drop experiments, number of events between samples: 100,000.

d (%) Sender Receiver

CPU_CLK_UNHALTED INST_RETIRED CPU_CLK_UNHALTED INST_RETIRED

S-Sender 0.1 SRPIC 18039.0 ± 1041.5 7371.5 ± 400.8 93309.8 ± 12306.0 11895.3 ± 1200.7
NSRPIC 17452.5 ± 890.8 7139.5 ± 308.5 100789.5 ± 15155.2 10590.7 ± 1212.3

0.01 SRPIC 43392.0 ± 1548.1 18224.0 ± 642.3 189359.6 ± 22095.5 29034.6 ± 1473.3
NSRPIC 42637.4 ± 1820.3 18030.0 ± 661.4 190660.8 ± 18738.4 29403.0 ± 1640.1

0.001 SRPIC 145287.5 ± 7018.2 64588.5 ± 3092.6 505684.8 ± 28193.3 104679.0 ± 4363.6
NSRPIC 142372.7 ± 10217 63124.2 ± 4903.4 511500.5 ± 47159.4 103279.0 ± 8365.5

A-Sender 0.1 SRPIC 17062.7 ± 405.8 7042.3 ± 170.6 89293.7 ± 5391.9 10153.7 ± 965.0
NSRPIC 18075.7 ± 1245.2 7363.3 ± 394.7 92026.7 ± 19526.5 10963.3 ± 1784.9

0.01 SRPIC 42289.0 ± 2714.1 17738.5 ± 1126.0 196918.5 ± 53293.1 28903.0 ± 2574.7
NSRPIC 48668.3 ± 3581.5 20555.3 ± 1617.9 184391.7 ± 34923.8 33767.7 ± 4173.0

0.001 SRPIC 143978.5 ± 10548.9 63787.0 ± 5052.1 502639.2 ± 41314.5 103703.5 ± 7433.4
NSRPIC 143880.0 ± 2130.8 63694.2 ± 572.1 492621.5 ± 2753.3 105082.5 ± 4147.2
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as old ones as a newer cumulative ACK often arrives a bit
‘‘ahead” of its time making rest smaller sequenced ACKs
very close to a no-op. The unfortunate result is that the
sender’s congestion window will grow far too slowly [4].
These experiments demonstrate that combined with the
forward path packet reordering, ACK reordering in the re-
verse path might lead to unpredictable TCP throughput,
even through SRPIC can effectively reduce packet reorder-
ing in the receiver. Experiments with multiple TCP streams
draw similar conclusions.

4.4. Delay experiments

Without doubt, SRPIC adds extra delays for TCP traffic.
The TCP traffic of idle connections like Telnet or SSH are
delayed the most. This is because idle connections’
throughput is often low and their sorting block usually
cannot reach BlockSize. As such, the packets are delivered
upward either at the end of interrupt coalescing, or when
Global_SRPIC_PacketCnt reaches Ringbuffer_Size. It has been
analyzed in Section 3.3 that the delay caused by SRPIC is
negligible. This claim is further verified by the following
experiments.

In the experiments, the sender transmits 10 parallel TCP
streams to the receiver at full speeds; no packet reordering
or drops are configured. At the same time, we login the re-
ceiver from a third system with SSH and type ‘‘ls –al” for a
thousand time to simulate idle connection traffic. The
Pinged RTT statistics between the third system and the
receiver are: min/avg/max/mdev = 5.207/5.212/5.232/
0.093 ms. The third system runs Linux 2.6.24; its system
clock resolution is 1 ms. It has been instrumented to re-
cord each TCP-layer calculated RTT. The cumulative dis-
tribution functions (CDF) for the recorded TCP-layer
calculated RTT with or without a SRPIC receiver are com-
pared. Also, the receiver has been instrumented to record
the duration that softnet spends emptying the ring buf-
fer in each cycle.

Fig. 6A shows the CDF for the third system TCP-layer
calculated RTT and Fig. 6B shows the CDF for the duration
that receiver softnet spends emptying the ring buffer for
each interrupt coalesced cycle. Fig. 6A clearly shows that
the CDF with SRPIC almost totally overlaps that of Non-
SRPIC. For both cases, the TCP-layer calculated RTT is either
5 ms or 6 ms. This is because TCP calculates segments’ RTT
with integral jiffy units. Jiffy represents system clock gran-
ularity; for Linux and other OSes, the finest system clock

granularity only reaches 1 ms level. TCP-layer cannot tell
the RTT changes less than 1 ms. As it has been analyzed
in Section 3.3, the extra delay caused by SRPIC is at most
at sub-milliseconds’ level. This is further verified by the
experiment results of Fig. 6B. For the duration that receiver
softnet spends emptying the ring buffer for each interrupt
coalesced cycle, the CDF with SRPIC almost totally overlaps
that of Non-SRPIC; mostly, the duration is less than 20 ls.
It verifies our claim that the delay caused by SRPIC is
negligible.

4.5. About experiment parameters

In our experiments, we use both S-sender and A-sender
cases. However, under the same network conditions, their
TCP performance varies greatly. We try different combina-
tions of alpha, beta, and delta to create ‘‘workable” net-
work conditions, which cover a wide spectrum of TCP
throughputs. We are trying to avoid the extreme cases that
either S-sender’s performance is very bad or A-sender’s
performance saturates the 1 Gbps link. In our experiments,
the value for b used when combined with packet loss dif-
fers from any of the values used in the other experiments.
In the packet reordering experiments, we chose 10%, 2%,
1%, and 0.2% for b. In the packet reordering and drop exper-
iments, we chose 0.4% for b. We did try other values of b in
the reordering and drop experiments. When b is set as high
as 1%, S-sender’s performance is very bad under any non-
zero packet loss; when b is a low as 0.2%, A-sender easily
saturates the link. So, we compromised and chose b as
0.4%. However, it needs to emphasize that different types
of experiments are relatively independent.

5. Discussion and conclusions

Originally, we had planned to implement a SRPIC-like
mechanism between the IP and TCP layers. The final imple-
mentation of SRPIC was inspired by the LRO implementa-
tion in [41]. When combined with LRO, the overheads of
SRPIC are at least cut in half.

Implementing a mechanism similar to SRPIC between
the IP and TCP layers has the advantages of saving the
overheads in maintaining the SRPIC_manager for each TCP
stream, where SRPIC could be performed within each TCP
socket. However, there is no natural grouping of packets
into blocks at that layer. A timing or other mechanism

Table 8
The forward and reverse paths experiments.

d Throughput (Mbps) PktsRetrans/Mbps DupAcksIn/Mbps SackBlocksRcvd/Mbps

N-SRPIC SRPIC N-SRPIC SRPIC N-SRPIC SRPIC N-SRPIC SRPIC

S-Sender 0.1 27.1 ± 0.06 33.7 ± 0.39 67.5 ± 0.7 29.2 ± 0.11 794.9 ± 2.8 493.6 ± 1.59 1290.5 ± 5.3 622.9 ± 1.38
0.01 60.7 ± 1.4 64.1 ± 1.0 75.3 ± 0.9 31.3 ± 1.3 728.7 ± 2.0 445.7 ± 1.4 1128.3 ± 5.0 550.1 ± 3.5
0.001 84.4 ± 1.1 87.5 ± 0.7 103.3 ± 6.2 40.4 ± 2.5 747.6 ± 12.6 446.2 ± 2.4 1165.6 ± 18.8 554.2 ± 4.7

A-Sender 0.1 43.5 ± 0.56 44.9 ± 0.5 4.4 ± 0.09 4.58 ± 0.02 825.2 ± 2.6 524.8 ± 6.5 1510.8 ± 4.7 675.5 ± 7.3
0.01 183.0 ± 0.0 179.7 ± 3.5 0.4 ± 0.01 0.4 ± 0.02 752.6 ± 2.5 449.9 ± 2.6 1309.6 ± 6.3 575.3 ± 6.2
0.001 306.3 ± 3.6 356.7 ± 3.9 0.04 ± 0.003 0.05 ± 0.001 719.6 ± 4.3 352.3 ± 3.4 1775.9 ± 15.3 729.9 ± 13.8
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would be needed to hold packets for sorting and to flush
sorted blocks at appropriate times. Still, since TCP traffic
is bursty, a mechanism similar to SRPIC in between the IP
and TCP layers might still be worth trying. We leave it
for further study.

Due to system clock resolution issues, it is difficult to
emulate networks with bandwidth beyond 1 Gbps. All
our experiments are run upon Gigabit networks. However,
SRPIC should be more effective in higher bandwidth
networks.

SRPIC will be beneficial whenever interrupt coalesced
sorting blocks can be effectively formed. Formula (3)
has clearly showed that the block size Blockj relies not
only on the instantaneous packet arrival rate PðtÞ, but also
on the receiver (T intr and Rsn). Please note that the overall
TCP throughput measures only ‘‘macroscopic” quantities.

It is not equivalent to an instantaneous packet arrival
rate. Therefore, even at low throughputs, the instanta-
neous arrival rate could be high due to TCP traffic’s bursty
nature. A relatively ‘‘slow” receiver would have a larger
T intr and smaller Rsn. As such, even with relatively small
instantaneous packet arrival rate, Blockj could still be
large and lead to the formation of effective SRPIC sorting
blocks. In our paper, the experiments have showed SRPIC
is more effective when the throughput is higher (prefera-
bly several 100 Mbps). This is because we have used a
very fast receiver (3.8 GHz CPU, 10 Gbps NIC) and a rela-
tively slow sender (2.0 GHz CPU, 1 Gbps NIC) in the
experiments. Due to the physical limits (energy walls,
heat walls), few CPUs can have clock speeds above
3.8 GHz. For the past few years, in the processor field,
the trend has been shifting from a single high-clock CPU

Fig. 6. Delay experiments.
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to multi-core processors with relatively slower speeds. So,
SRPIC would be applicable even under the conditions of
low network throughputs.

However, SRPIC will have limited applicability in net-
work environments where interrupt coalesced sorting
blocks cannot be effectively formed:

� Bandwidth-limited network environments: in such
environments, the bandwidth-limited lines effectively
space out the packets. As a result, packet arrival rates
will be lower than the receiver’s packet service rate.
The experiment Fig. 2A has clearly confirmed this point.
We believe most home networking environments
belong to this category. Most home users are still con-
nected to an access network at 10 Mbps, or even less.

� Lossy network environments with more packet drops: in
these cases, the sender’s congestion window cannot
effectively open up, throttling the maximum data send-
ing rates. Interrupt coalesced sorting blocks cannot be
effectively formed in the receiver.

� IPsec network environments: IPsec-protected packets
cannot be recognized as TCP by SRPIC at the device dri-
ver level.

However, SRPIC could be implemented as an OS feature
and turned off in inapplicable environments, or dynami-
cally selected.

In this paper, we have proposed a new strategy: Sort-
ing Reordered Packets with Interrupt Coalescing (SRPIC)
to eliminate or reduce the packet reordering in the recei-
ver. Experiments have demonstrated the effectiveness of
SRPIC against forward path reordering. The significant
benefits of our proposed SRPIC include reducing process-
ing in the TCP layer in both sender and receiver, higher
achieved TCP throughput; maintenance of TCP self-clock-
ing while avoiding injection of bursty traffic into the net-
work, reduction or elimination of unnecessary
transmissions, and coexistence with other packet reorder-
ing-tolerant algorithms.
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